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peptide-OP (random coil) -----> peptide-)OP(h-t-h)* <eq. la
*helix -turn-helix conformation

peptide-OP(h-t-h) + DNA operator sequence <----->
(eq. lb

peptide-,OP (h-t-h)-- Operator sequence

Sequence specific scission would result from the following reaction:

peptide-OP (h-t-h)--Operator sequence-->
4eq. ic

nicked Operator sequence

Background scission is observed because of the high concentration of the
peptide existing as a random coil

peptide-OP (random coil) + random sequence DNA--->

nicked DNA products <eq. 2

While our work suggests that 1,10-phenanthroline-modified peptides may not prove
to be useful as reagent, it demonstrates that DNA binding can stabilize a 21
amino acid peptide in the helix-turn-helix conformation. It has also demonstrated
that intact DNA binding proteins can be chemically be converted to specific stable
nucleases.
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The objectives of our initial proposal included:

1) Targeting DNA with native repressor proteins modified with 1,10-
Phenanthroline-Copper.

2) Sequence Independent Scission using Peptides as Carriers of 1,10-
Phenanthroline- Copper.

3) Synthesis of Sequence Specific Peptides modified with 1,10-
Phenanthroline-Copper

1) Targeting DNA with native repressor proteins modified with
1,10 -P henanthroline-C opper.

Experiments with the E. Coli trp repressor demonstrated the
feasibility of using a protein or a peptide as a carrier of the nuclease
activity of 1,10-phenanthroline-copper. (C.-h. B. Chen and D.S. Sigman
"Chemical Conversion of a DNA-Binding Protein into a Site-Specific
Nuclease," Science 237 1197-1201 (1987)). The nuclease activity of the
derivatized protein mirrored the binding specificity of the parent protein.
Scission was observed at the two operators tested which are regulated by
the native protein. In each case, L-tryptophan was required. This amino
acid is a corepressor and must bind to the protein in order to achieve site-
specific binding. An additional important feature of the cutting activity,
essential for its projected use in chromosomal mapping, is that the reagent
accomplished double strand scission.



Since one of the central goals of developing semisynthetic restriction
endonuclease is to provide new reagents for chromosomal mapping, we are
investigating the reactivity of the modified trp repressor within an agarose
gel matrix. All manipulations of chromosomal size DNA must be carried
out in the gel matrix to avoid shearing of the high molecular weight DNA.
Presently, we are investigating the scission of the circular E. coli genome.
Since there are three binding sites for the trp repressor in the E. Coli
genome, it should be possible to identify three distinct segments of DNA by
pulsed field gel techniques with appropriate probes in Southern blots.

To improve the efficiency of this scission reagent, 1,10-
phenanthroline derivatives with long linker arms have been synthesized
They are currently being used to modify the E. coli trp repressor in order
to improve the efficiency of the reaction.

2) Sequence Independent Scission using Peptides as Carriers of
1,10-Phenanthroline- Copper.

As initially proposed, we sought to examine the reactivity of 1,10-
phenanthroline linked to a peptide which assumed a helical structure upon
binding to DNA. This proposed line of experimentation led us to
investigate the broader question of the influence of substitutents of 1,10-
phenanthroline on the specificity of the nuclease activity. The following
results have been obtained. 2-Substitution blocks scission since the
coordination complex cannot undergo the oxidative cycle necessary for
reaction. Substitutents at the 5-position are readily tolerated except if
they are anionic. Substitution at the equivalent 4 and 7 positions with a
methyl group yields an active complex; with a phenyl group, there is a
change in reaction mechanism leading to fundamentally different
nucleolytic activity. Substitution at the 3-position blocks scission.
Substitution at the 5-position is not only tolerated but it also does not alter
the intrinsic reactivity of the 1,10-phenanthroline-copper for a given DNA
sequence if the substitutents lack defined specificity themselves. 5-
Substitutents on 1,10-phenanthroline which have little influence on the
specificity of the scission reaction include methyl, phenyl bromo, and
acetamido, aminoethyl and amino hexyl groups. The reason for their lack
of effect is apparent from the structure of the essential reactive
intermediate formed between the tetrahedral 2:1 5-phenyl-l,10-
phenanthroline-cuprous complex and DNA presented in Figure 1. In this
model of the essential reactive intermediate, the 5-phenyl substituent does
not interact directly with the walls of the minor groove. An important
consequence of these studies is that the targeted nucleolytic agents should
be synthesized by linking the affinity ligand to the 5-position of the
phenanthroline.



Figure 1

The phenanthroline derivatives with 5-substituted cationic groups
exhibited similar sequence preferences as the neutral derivatives but
generally cut the less reactive sites more efficiently. A more even
digestion pattern is consistent with minor groove binding of the
coordination complex since the phosphodiester backbone generates a
negative potential well. Therefore, cationic phenanthroline derivatives
which form a cuprous complexes with net charges between +3 and +4 bind
more efficiently than complexes formed with neutral phenanthrolines and
(e.g. 5-phenyl-1,10-phenanthroline) with net charge of +1.

In order to examine the reaction of 1,10-phenanthroline-copper
linked to a sequence neutral binding peptide, the coordination complex
was attached to RecA, a bacterial protein which plays a central role in
recombination and binds single and double stranded DNA in a sequence
independent manner. Subs~titution of the phenanthroline at the 5 position
with the RecA protein generated a very efficient scission reagent but one
which lost the sequence specificity characteristic of the other 1,10-
phenanthroline-copper complexes. The tight binding of the Rec A protein
must override the small differences in binding affinity which lead to the
sequence dependent reactivity. The experiments summarized in this
section demonstrate that substitution at the 5-position of phenanthroline
does not interfere with the nuclease activity. Moreover, these experiments
demonstrated that the linkage of a small protein to the 1,10-
phenanthroline-copper complex does not inhibit the nucleolytic activity
either by scavenging cupric ion or quenching the oxidative intermediate
essential for the DNA scission reaction.



3) Synthesis of sequence specific peptides modified with 1,10-
phenanthroline copper.

In contrast to the results summarized above, derivatization of 1,10-
phenanthroline at the 5-position with Hoechst dye 33258 yielded a 1,10-
phenanthroline derivative with a scission specificity which reflected the A-
T specificity of this fluorescent cytological stain (Figure 2). The cutting is
particularly efficient because the dye binds within the minor groove.

N

0 C* 3 NN

Figure 2

Hoechst dye 33258 is the first small organic ligand which we have studied
that can redirect the cutting activity of 1,10-phenanthroline-copper

The experiments with Hoechst dye, as well as with the RecA protein,
indicated a peptide derived from binding domain of a DNA binding protein
should be able to target the chemical nuclease activity for site specific
cleavage if these peptides had any affinity for DNA. Initially, it was
proposed to synthesize peptides derived from the DNA binding domains of
phage repressors. However, since we had demonstrated that the trp
repressor could be transformed into a site specific nuclease, peptides
derived from the DNA binding domain of this protein were synthesized
instead. In this way, the relative efficiency of cutting of an operator
sequence by the intact protein and the peptide could be compared. With
the resources available, it was possible to synthesize the following
peptides:
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Wild type helix-turn-helix peptide

OP-Cys-Gln-Arg-Glu-Leu -Lys-Asn-Glu-Leu-Gly-A ia-Gly-Ile-Ala-Thr-Ile-

Thr-Arg-_i -Ser-Asn -NH

Chemically mutated helix-turn-helix peptide

OP-Cys-Gln-Arg-Glu-Leu-Lys-Asn-Glu-Leu-Gly-Val -Gly-Ile-Ala-Thr-Ile-

Thr-Arg-Ta-Ser-Asn -NH

These peptide sequences correspond to the helix-turn-helix domain
of the trp repressor with the following qualifications. The N-terminal
cysteine residue is not part of the sequence of the protein but has been
included to facilitate derivatization. The underlined residues at 77 and 85
in the wild type repressor are alanine and glycine, respectively. These
have been substituted by valine and tryptophan, respectively for the
following reasons: a) one mutant trp repressor with valine at 77 has a
very high affinity for the operator sites; 2) the X-ray structure has shown
that L-tryptophan, which must bind to the protein for the repressor to
have affinity for DNA, interacts near this glycine and may be essential for
stabilizing the conformation of the protein. The peptide derived from the
wild-type sequence does not cause sequence dependent scission. Its
scission pattern is that of unsubstituted 1,10-phenanthroline-copper.

Each peptide was a) dimerized by forming disulfide bonds at the N-
terminal cysteine residue; and b) derivatized by 5-iodoacetyl-l,10-
phenanthroline. The interaction of these various synthetic products with
the E. coli aro H operator, one of three regulated by the E. coil trp
repressor, was studied using DNase footprinting. Under conditions in
which the native protein binds with high affinity, none of these peptides
showed any sequence specific interaction with the target DNA using the
DNase I footprinting assay (Fig 3).

The failure to observe high affinity binding does not necessarily
preclude sequence specific cutting by the peptide. The free energy of
binding of the peptide for its nucleotide sequence could stabilize the
peptide in the conformation competent for DNA binding as indicated in the
simple scheme below.



peptide-OP (random coil) < ---- > peptide-OP(h-t-h)* (eq. la
*helix -turn-helix conformation

peptide-OP(h-t-h) + DNA operator sequence < ------- >
{eq.lb

peptide-OP (h-t-h)--Operator sequence

Sequence specific scission would result from the following reaction:

peptide-OP (h-t-h)--Operator sequence-->
(eq. Ic

nicked Operator sequence

A direct consequence of this simple scheme is that a peptide would bind to
a specific sequence more weakly than a protein at comparable
concentrations. Since site specific cutting is a reflection of binding, peptide
directed cutting would not be expected to be as strong as that of protein
directed cutting when presented at equivalent concentrations. The
specificity of the cutting (i.e. the site of cutting) would depend on the
reactivity of the 1,10-phenanthroline-modified random coil form of the
protein free in solution.

In Figure 3, the scission of the nontemplate strand of the aro H
operator using the OP-Cu derivatized trp repressor, underivatized OP-Cu,
and OP-Cu derivatized chemically mutated peptide are compared. The
products of the scission by the copper complex of OP-linked to the peptide
were different from those of the unsubstituted 1,10-phenanthroline-
copper exactly in the region in which the derivatized trp repressor cuts the
nontemplate strand of the aro H operator most strongly (Fig 3). This was
confirmed by comparing densitometric scans of the digestion pattern of
OP-Cu, the peptide linked to OP-Cu and the trp repressor derivatized with
OP-Cu (Fig.4). The targeted scission by the peptide indicated that the
specific DNA sequence is able to stabilize the peptide in a precise
conformation.



Peptide-Directed Scission of aro H
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Peptide Directed Scission of aro H
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Figure 4



Even though enhanced cutting at the operator sites is evident,
substantial background cutting is evident. This cutting is due to 1,10-
phenanthroline linked to the peptide in the random coil conformation
which like other 5-substituted phenanthrolines, reacts similarly to the
unsubstituted 1,10-phenanthroline. Since the peptide is present at large
excess relative to the target DNA, it is the predominant form of the peptide
and 1,10-phenanthroline in the incubation mixture. As a result the large
excess of peptide-OP (random coil) will result in the following reaction

peptide-OP (random coil) + random sequence DNA--->

nicked DNA products (eq. 2

The conformational instability of this peptide will limit the utility of
peptides as sequence specific scission reagents. Binding energies between
DNA and the peptide are not large enough to stabilize the conformation of
the peptide at equivalent concentrations.Specific cleavage will be
achieved only if the peptide-OP (h-t-h) is intrinsically stable in
the helix-turn-helix motif free in solution. Because of the intrinsic
affinity of 1,10-phenanthroline-copper for DNA, it might not be possible to
suppress the background reaction of the OP-Cu-peptide. Like the 21 unit
described here, the 30 amino acid peptide derived from the DNA binding
domain of the transcription factor TF IIIA also fails to exhibit site specific
binding for its target sequence using a footprinting assay.

The signficant conclusion of our study is that it
demonstrates that DNA binding can stabilize a 21 amino acid
peptide in the helix-turn-helix conformation.


